126 research outputs found

    Differential elasticity in lineage segregation of embryonic stem cells

    Full text link
    The question of what guides lineage segregation is central to development, where cellular differentiation leads to segregated cell populations destined for specialized functions. Here, using optical tweezers measurements of mouse embryonic stem cells (mESCs), we reveal a mechanical mechanism based on differential elasticity in the second lineage segregation of the embryonic inner cell mass into epiblast (EPI) cells - that will develop into the fetus - and primitive endoderm (PrE) - which will form extraembryonic structures such as the yolk sac. Remarkably, we find that these mechanical differences already occur during priming and not just after a cell has committed to differentiation. Specifically, we show that the mESCs are highly elastic compared to any other reported cell type and that the PrE cells are significantly more elastic than EPI-primed cells. Using a model of two cell types differing only in elasticity we show that differential elasticity alone can lead to segregation between cell types, suggesting that the mechanical attributes of the cells contribute to the segregation process. Our findings present differential elasticity as a previously unknown mechanical contributor to the lineage segregation during the embryo morphogenesis

    Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment

    Get PDF
    Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175 °C, with the main focus on 100 and 175 °C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100 °C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174 °C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite–calcite transition occurs via an interface-coupled dissolution–reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record

    A highly compact packaging concept for ultrasound transducer arrays embedded in neurosurgical needles

    Get PDF
    State-of-the-art neurosurgery intervention relies heavily on information from tissue imaging taken at a pre-operative stage. However, the data retrieved prior to performing an opening in the patient’s skull may present inconsistencies with respect to the tissue position observed by the surgeon during intervention, due to both the pulsing vasculature and possible displacements of the brain. The consequent uncertainty of the actual tissue position during the insertion of surgical tools has resulted in great interest in real-time guidance techniques. Ultrasound guidance during neurosurgery is a promising method for imaging the tissue while inserting surgical tools, as it may provide high resolution images. Microfabrication techniques have enabled the miniaturisation of ultrasound arrays to fit needle gauges below 2 mm inner diameter. However, the integration of array transducers in surgical needles requires the development of advanced interconnection techniques that can provide an interface between the microscale array elements and the macroscale connectors to the driving electronics. This paper presents progress towards a novel packaging scheme that uses a thin flexible printed circuit board (PCB) wound inside a surgical needle. The flexible PCB is connected to a probe at the tip of the needle by means of magnetically aligned anisotropic conductive paste. This bonding technology offers higher compactness compared to conventional wire bonding, as the individual electrical connections are isolated from one another within the volume of the paste line, and applies a reduced thermal load compared to thermo-compression or eutectic packaging techniques. The reduction in the volume required for the interconnection allows for denser wiring of ultrasound probes within interventional tools. This allows the integration of arrays with higher element counts in confined packages, potentially enabling multi-modality imaging with Raman, OCT, and impediography. Promising experimental results and a prototype needle assembly are presented to demonstrate the viability of the proposed packaging scheme. The progress reported in this work are steps towards the production of fully-functional imaging-enabled needles that can be used as surgical guidance tools

    Counteraction of Tetherin Antiviral Activity by Two Closely Related SIVs Differing by the Presence of a Vpu Gene

    Get PDF
    In different primate lentiviruses, three proteins (Vpu, Env and Nef) have been shown to have anti-tetherin activities. SIVden is a primate lentivirus harbored by a Cercopithecus denti (C. denti) whose genome code for a Vpu gene. We have compared the activity of HIV-1 Vpu and of SIVden Vpu on tetherin proteins from humans, from C. denti and from Cercopithecus neglectus (C. neglectus), a monkey species that is naturally infected by SIVdeb, a virus closely related to SIVden but which does not encode a Vpu protein. Here, we demonstrate that SIVden Vpu, is active against C. denti tetherin, but not against human tetherin. Interestingly, C. neglectus tetherin was more sensitive to SIVden Vpu than to HIV-1 Vpu. We also identify residues in the tetherin transmembrane domains that are responsible for the species-specific Vpu effect. Simultaneous mutation (P40L and T45I) of human tetherin conferred sensitivity to SIVden Vpu, while abolishing its sensitivity to HIV-1 Vpu. We next analyzed the anti-tetherin activity of the Nef proteins from HIV-1, SIVden and SIVdeb. All three Nef proteins were unable to rescue virus release in the presence of human or C. denti tetherin. Conversely, SIVdeb Nef enhanced virus release in the presence of C. neglectus tetherin, suggesting that SIVdeb relies on Nef in its natural host. Finally, while HIV-1 Vpu not only removed human tetherin from the cell surface but also directed it for degradation, SIVden Vpu only induced the redistribution of both C. denti and C. neglectus tetherins, resulting in a predominantly perinuclear localization

    Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis

    Get PDF
    The central nervous system (CNS) is capable of gathering information on the body’s nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus

    Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification

    Get PDF
    The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification
    corecore